
Version 1.0

February 17, 1998

STAR Note 325

STAR Table Structures for TPC Data Distribution

R. Bossingham

Nuclear Science Division

Lawrence Berkeley National Laboratory

Two formats, appropriate for STAR TPC data distribution by an event server, are

de�ned. The formats consist of STAF tables within a directory structure: one relates to

the TPC pad planes directly; the other relates to their instrumentation. Data subsets are

easily extracted for distribution at the level of a half pad row or FEE card, respectively.

The relationships of the data structures to the on-line event server, as well as o�-line

cluster/hit-�nding, are explored. The design has evolved to the point that both should

be able to use the structures e�ciently, but event server requirements must be speci�ed

before the design can be �nalized. The structures will be more e�cient than the existing

ones with the tcl cluster/hit �nder, but a tcl rewrite will be needed to exploit them

fully.

The formats evolved from those used for TPC cosmic-ray testing,1 but di�er enough

as to be incompatible. The new formats better support the 24 TPC sectors, optionally

index the data at �ner (pad-level) granularity, are more appropriate for an event server,

and eliminate compromises made due to MiniDAQ constraints. They are also more

weighted toward e�cient representation of central Au-Au events, and their storage

overhead for such events is a bit less, when indexed at the same level. RecentVenus+tss

simulation results2 predict an overhead of �21% for such events. The �61 KB/event

overhead for sparse events (e.g., peripheral collisions) is acceptable in absolute terms,

but represents a much higher percentage (�285%).

Introduction

STAR data will be transmitted and recorded by DAQ in a compressed format that is opaque until

translated by DAQ-supplied library routines. The translation will apparently occur both online,

in a system connected to the event server, and o�ine, after events are read from tape. If the

same TPC software is to be used online and o�ine, the translated TPC format must be able to

1R. Bossingham, STAR Note SN0282 (1997).
2Iwona Sakrejda, http://www.rhic.bnl.gov/star/starlib/doc/www/html/tpc l/tpc.html .

1

accommodate the needs of the on-line event server and diagnostics, as well as the o�-line analysis.

It must also support the full range of TPC data densities, from single cosmic rays to central Au-Au

collisions to pedestal events.

An appropriate format for the translated TPC data has not yet been de�ned. A candidate,

derived from the TPC cosmic-ray testing format (referred to here as the SN0282 format), is proposed

in this note. The SN0282 format, itself, is not ideal for the representation, distribution and analysis

of data from the full TPC; it was primarily designed for e�cient data storage, with compromises

made to accommodate MiniDAQ limitations. Some shortcomings of this older format will be

mentioned briey in the next section.

Other STAR collaborators are responsible for some aspects of the SN0282 and currently pro-

posed formats. Iwona Sakrejda suggested a number of speci�c improvements to the format and

this note. Nathan Stone and Mark Gilkes wrote translation codes that revealed some awkward fea-

tures inherent in the SN0282 format. Susanna Jacobson discussed and tested several aspects of the

SN0282 format, and, in particular, determined requirements related to word-boundary alignment.

Craig Tull showed some of the potential of Staf with an earlier, informal data-format proposal.

More generally, TPC data formats have been discussed at length by Mike Levine, Doug Olson,

Lanny Ray, Jo Schambach, Craig Tull, Bill Greiman and others.

TPC Data Format Considerations

Data from the STAR TPC can be structured in two natural ways:

� Physical subdivisions: sector, pad row, pad and time bucket. To reduce granularity, variable

lengths and the data table sizes, the proposed format also separates inner and outer subsectors;

�rst and second halves of pad rows; early and late parts of the time-bucket range. Calibration

and analysis values apply mostly at the subsector, pad and pixel levels.

� Electronics subdivisions: sector, readout board, Front-End Electronics (FEE) card, FEE

channel and time bucket. The proposed format divides the data by readout board (1{6);

and, again, by early and late parts of the time-bucket range. Calibration and analysis values

apply at the sector, readout board, FEE card, FEE channel, and pixel levels, with occasional

references to FEE chips and the 16-channel segments grouped by the readout boards.

Information associated with these subdivisions includes:

Sector, subsector: ID; geometrical alignment; availability of data (DAQ will support sector-level

granularity); lists of pad rows with data entries.

Pad row: Cluster and hit �nding in tcl is by pad row, and some calibration e�ects could appear

at this level (ground, anode and �eld wires span a pad row). Pad-row values include row ID,

lists of pads with data entries, and row geometry (number of pads and location).

2

Readout board (RDO): RDO ID; status read by from Slow Controls; FEE location list; FEE

cards with data entries; trigger-time o�set; RDO slow-controls values.

FEE card: FEE card ID (both RDO and sector locations); channels with data entries.

Pad/channel: ID (location within a row); bad channels; t0 calibration; time buckets with data

entries; FEE pulser status; and �xed-length lists of ADC, pedestal, or noise data, if a standard

time-bucket range was de�ned.

Time bucket: ID; ADC value (with/without pedestal subtraction and gain correction; linear,

non-linear or truncated; 8-bit, 10-bit or oating); mean pedestal; rms; drift of pedestal mean.

Beyond the need to parallel the TPC structure, the format is shaped by practical considerations.

Many of these di�er from those relevant to MiniDAQ that shaped the SN0282 format. Current

design considerations include these:

� Structures must be de�ned to support up to 24 sectors, 2 subsectors per sector, 45 pad rows

per sector, 182 pads per pad row and 512 time buckets per pad.

� Structures must be de�ned to support up to 24 sectors, 6 readout boards per sector, 36 FEE

cards per readout board, 32 channels per FEE card and 512 time buckets per channel.

� A �xed number of time buckets per channel (i.e., 512) cannot be assumed; the ADC sampling

frequency may be reduced, subdividing the TPC drift volume into fewer time buckets (�300).

� The format need not support modi�ed FEE's for anode-wire readout (supported by MiniDAQ|

but not actually used). Anode-wire hits will now be recorded through trigger.

� The format should emphasize convenience and speed of access, even at the expense of com-

pactness, since it is not primarily intended for bulk data storage.

� Generalized structures are needed, allowing an event server to provide subsets of the data,

and/or data types, in similar form to all data consumers.

� The format must allow e�cient data-subset extraction at the granularity to be supported by

the event server (ideally, pad row, FEE card or less) with only minimal decoding.

� Data should be e�ciently accessible for cluster and hit-�nding at the granularities that these

codes need: subsector, pad row and pad.

� Structures should be compatible with those associated with cluster and hit �nding.

� The somewhat random relation of FEE channels to TPC pads excludes an e�cient structure

that directly references single data tables by both pads and FEE channels. However, indirect

referencing can, and must, be supported, using information from the data stream.

3

� The format must support the full range of STAR data densities. This implies exibility, both

event by event (runs will mix triggers types) and within an event. Format decisions must be

based on simple criteria (e.g., data density.

� The Staf-level directory scheme should segregate tables by sector, allowing parallel structures

for each. Processing is at, or below, the sector level until track segments are linked across

sectors. (MiniDAQ's single-level sub-directories preclude much sophistication.)

� Data for cluster �nding should not split a pad row between tables. (MiniDAQ's i960's cannot

access data from more than two readout boards, so data are stored in six distinct table sets,

with pad rows sometimes split between sets).

� The data should be ordered and grouped so that memory accesses tend to be sequential.

� Table sizes should be consistent with e�cient processing; small tables have too much overhead,

and large tables can exhaust computer memory. Tables should hold the amount of data

handled in one stage|usually, that from one subsector or one readout board.

� Table columns should hold a single kind of information, and rows should map to a single

entity (e.g., a pad row, pad or pixel). Adding tables should not exact a large performance

penalty (unlike MiniDAQ), so kluges to squeeze data into unnatural places can be avoided.

� The format should provide explicit ags and values for decoding. (SN0282 de�ned 22 formats,

each implying a set of decoding decisions; this complicated decoding.)

� Decoding ags should be placed in the table hierarchy above the level where they are applied,

but not so high as to unnecessarily compromise generality.

� The naming scheme for directories and tables should be mneumonic, consistent and extensible.

� Table de�nitions must avoid memory mis-alignment: the row length must be a multiple of

the longest data type's length, and the length of data types cannot increase across a row, and

table lengths should be a multiple of the word length.

Nomenclature

Glossary

Black data: Data that includes every pixel within the allowed range.

DAQ: Data-AcQuisition (the system, or the group responsible for the system).

FEE: Front-End Electronics; each card has 32 channels shared by two SAS/SCA chip pairs.

Grey data: Data that includes at least one pixel for every pad within the allowed range.

4

Mapped: Mapped data structures reect the physical TPC padplanes; generally intended for

cluster- and hit-�nding, and, possibly, tracking.

Native (or unmapped): Native data structures reect the TPC instrumentation and are in-

tended for studying and debugging the electronics.

RDO: Readout board. Services up to 36 FEE cards; reads digitized data and sends it to DAQ.

SAS: Ampli�er/Shaper. Two SAS chips form each FEE card's front end.

SCA: Switched Capacitor Array: Two SCA chips digitize data on each FEE card.

sector : One of the 24, 30-degree TPC sectors on one side of the central membrane. Each

consists of two subsectors, and is instrumented by six readout boards.

Sparse data: Data lacking entries for enough pads (more than �30%) that it is more e�cient to

mark pads with, than without, data.

Directory Naming

This note involves only the TPC, but Staf directory names must anticipate directories for other

detectors; simplistic directory names (e.g., \DATA") must be avoided. An obvious solution is to

prepend \TPC " to all TPC base-level directories. Further, since TPC directories will exist for

data, calibrations, global tracking and so forth, names should not be too narrow. For example,

the directories for raw data may also store cluster and hit tables, so \TPC DATA" is preferable to

\TPC RAW 8 BIT ADC DATA."

The directory names used in the �gures for this note are \TPC DATA," for raw and processed

data, and \TPC CAL," for some types of calibration data. However, such naming conventions are

completely divorced from the substance of the proposed format.

Table Naming

A table-naming convention provides fairly short, descriptive names for our tables, while allowing the

addition of more tables with names of the same form later (for cluster and hit-�nding, perhaps).

However, many tables contain several types of qualitatively di�erent information, making some

names neccessarily vague or incomplete. (Segregating every di�erent type of information into

a di�erent table would cause the number of tables to proliferate inconveniently.) Table names

contain up to four parts: StructureType RowEntity TableContentType SectorSubdivision.

Possibilities for StructureType include:

raw : Data structured like raw ADC data (e.g., pedestal means and gains).

cls : Clusters of pixels and related information.

rcl : Cluster information relating to raw data only.

hit : Hits and related information.

5

RowEntity means the thing described by one row in the table:

sector : One full sector within the TPC.

row : A pad row within a sector.

pad : A pad within a pad row.

seq : A sequence of consecutive time buckets from a pad (or FEE channel).

fee : A Front-End Electronics (FEE) card; up to 36 plug into a readout board.

chn : A channel on a FEE card.

grd : A grid element with Cartesian axes de�ned by one pad row and z.

TableContentType partially de�nes the information in the table for each RowEntity:

des : A desription of lower-level tables, if no more speci�c type applies.

idx : One index (or more) points to lower-level table rows; additional information may appear.

id : An ID for this entity (e.g., a pad or FEE-channel number).

nin : The number of entries in a lower-level table for this entity.

o� : One, or more, index o�set, pointing into a lower-level table.

The SectorSubdivision is the part of a sector to which a table refers.

in : Inner subsector.

out : Outer subsector.

ri : Readout board i; i 2 [1; 6].

Conventions for Table Entries

Referencing If some entity might be associated with a lower-level table row, three referencing

options are often available:

N : None: The lower-level table does not exist.

R : Range: ID's from an entire, de�ned range are associated in order.

L : ID's are explicitly listed in a table.

Format Two basic formats are supported:

U : Unmapped, or native. Data are referenced to TPC readout boards and FEE cards.

M : Mapped. Data are referenced to the TPC padplane and its components.

6

Variable types Table entries are de�ned according to a semi-standard convention:

char : Character or signed octet.

u char : Unsigned octet.

short : Signed, 2-byte integer.

u short : Unsigned, 2-byte integer.

long : Signed, 4-byte integer.

u long : Unsigned, 4-byte integer.

Data Format De�nition

Format Overview

The data structures are de�ned with access, extraction and storage e�ciency in mind. They are

intended to be \natural," exploiting STAF's capabilities|not just bags o'bytes. Two distinct sets of

structures are de�ned|mapped and native|along with ags to de�ne, in part, their interpretation.

Pure (often pad- or pixel-level)data are segregated into independent tables.

� Mapped data structures reect the physical TPC padplanes and are intended for hit-�nding

and tracking. Figure 1 shows the basic scheme. The DAQ data stream is to contain the

information needed to map data onto pads, without reference to external maps; this should

not change during a run. Note that data from \blind" FEE channels (those unassociated

with a pad) cannot be represented.

� Native-data structures reect the TPC instrumentation and are intended for electronics stud-

ies and debugging. Figure 2 shows the basic scheme. FEE-channel data trivially map to

IC chips or 16-channel groups, as needed. FEE channel maps can relate native-format data

to the physical TPC, but this is not e�cient, unless forced by simultaneous electronics and

tracking studies. (A graphics display to allow direct viewing of native data would be very

valuable|a readout-board analogue to the Pad Monitor that displays pad-plane data.)

The tables used to represent the data in mapped and native formats are listed in Table 1. They will

be de�ned and discussed below. Within this framework, adding more parallel data tables does not

increase the overhead; and data table deletion requires no changes to other tables. However, adding

or deleting items within a data table can force signi�cant changes. In particular, it is expensive to

interleave sets of tables, as would be neccessary if the data from each readout board, or each i960,

were translated as an independent table. Instead, translation and merging should happen in one

step as the derived tables are �rst �lled.

Sector Description

Di�erent TPC sub-directory branches can be created to hold di�erent classes of information; obvious

ones include calibration data and event data. A branch is described, to a large extent, by its

7

Pad tables

Pad-row tables

Sector_01/

Sector-level tables

TPC_DATA/

Overview of Mapped TPC Data

Pixel-sequence tables

Outer sub-sector tables

Pixel-level tables

Pixel-sequence tables

Pad tables

Pad-row tables

Pixel-level tables

Inner sub-sector tables

06-FEB-1998
R.Bossingham

TPC_CAL/
*
*
*

*

Sector_02/

Sector_24/

*
*

Figure 1: Overall structure to store mapped data, showing TPC data and

calibration branches. TPC CAL and TPC DATA have the same substruc-

ture.

Hierarchy Level Mapped Data Tables Native Data Tables

(*=in, out) (*=1,2,3,4,5,6)

Full TPC raw sector des raw sector des

Sector N/ Level 1 raw row idx * raw fee idx r*

Sector N/ Level 2 raw pad nin * raw chn nin r*

" raw pad o� * raw chn o� r*

" raw pad id * raw chn id r*

Sector N/ Level 3 raw seq des * raw seq des r*

Table 1: List of table names de�ned in this note. The tables, listed side by side for the mapped

and native formats, are similar and serve the same purposes.

8

TPC_CAL/
*

Pixel-level tables

Tables for RDO 6

*
*

TPC_DATA/

Pixel-level tables

Tables for RDO 1
Pixel-sequence tables

FEE-channel tables

Sector-level tables

Overview of Native TPC Data

Sector_01/

FEE-card tables

Pixel-sequence tables

*
*
*

*

R.Bossingham
06-FEB-1998

*
*

*

FEE-channel tables

FEE-card tables

*
*

Sector_24/

Sector_02/

Figure 2: Overall structure to store native data, showing TPC data and

calibration branches. TPC CAL and TPC DATA have the same substruc-

ture.

9

raw sector des table, having exactly 24 rows and ordered by sector ID (1{24).

Each row declares the data for that sector as mapped or native, and gives time-bucket informa-

tion. For mapped TPC data, it describes pad-row tables by subsector; for native data, it describes

the FEE-card tables by RDO. The contents are de�ned in Table 2. Its 864-byte length is usually

negligible, compared to the event size; a more compact form would save little space.

Two implicit assumptions inuence this format de�nition:

1. Time-bucket ranges and zero suppression are set at the sector level or above (i.e., globally).

2. The method of associating pad ID's with data can change below the sector level. (Row-by-row

determination may improve storage e�ciency.)

Tables parallel to raw sector des could be useful to the event server, marking, perhaps, which

data tables exist. Such a table should not be used by the analysis chain, since it de�nes a �xed list

of possible tables, and new, parallel tables will be needed as the software develops.

At the same sub-directory level as the raw sector des table are the 24 (possibly empty) sub-

directories Sector N/ for the sectors; raw sector des describes their highest level tables. All of

the tables are discussed and de�ned below. The semi-hierarchical table relationships for mapped

and native data are shown schematically in Figs. 3 and 4, respectively, and these �gures may be

helpful in understanding the discussions of the tables.

Pad-Row or FEE Description

For mapped data, pad-row descriptions are given by the raw row idx * tables, de�ned in Table 3.

They allow one to jump into the pad, sequence and pixel tables with half-pad-row granularity, The

entries that give the number of rows in the sequence- and pixel-level tables for both halves of the

pad row are, strictly speaking, redundant, but ease extraction of half-pad-row data subsets.

Half-pad-row granularity was chosen to improve random access within pad-level tables, allow

extraction of small data subsets by the event server, and allow pixel-data o�sets within that half

pad row to be held in a short int variable. (Optional raw pad o� * tables hold such o�sets, as

discussed below.)

For native data, the raw fee idx * tables, de�ned in Table 4, describe FEE-card-level tables

at FEE-card granularity and provide row indices into the FEE channel, pixel-sequence and pixel

tables. The table de�nition resembles that for mapped data. The number of rows in the lower-level

tables for each FEE card is given to allow one to extract the lower-level tables more easily.

Declaring Pad or Channel ID's There are three options for declaring the pads or channels

represented in subsequent data tables: 'N' for no entries at this level, 'R' for a single, unbroken

range, and 'L' for an explicit, ordered list. When data are sparse, this last option becomes e�cient|

both in terms of access and storage. The raw pad id * tables list and order pads by number

within a pad row; the raw chn id * tables list and order channels by number within a FEE card.

Tables 5 and 6 give descriptions.

10

Entries within Row Values Type Granularity Bytes

First time bucket 1 { 512 u short Sector 2

Last time bucket 1 { 512 u short " 2

\Middle" time bucket 1 { 512 u short " 2

Time-bucket referencing N, R, L char " 1

Format: unmapped, mapped U, M char Sector 1

Pad-row entries 0 { 13 u char Inner subsector 1

First pad row 13 { 1 u char " 1

Pad-row referencing N, R, L char " 1

Pad-row entries 0 { 32 u char Outer subsector 1

First pad row 45 { 14 u char " 1

Pad-row referencing N, R, L char " 1

FEE-card entries 0 { 36 u char RDO 1 1

First FEE card 1 { 36 u char " 1

FEE-card referencing N, R, L char " 1

FEE-card entries 0 { 36 u char RDO 2 1

First FEE card 1 { 36 u char " 1

FEE-card referencing N, R, L char " 1

FEE-card entries 0 { 36 u char RDO 3 1

First FEE card 1 { 36 u char " 1

FEE-card referencing N, R, L char " 1

FEE-card entries 0 { 36 u char RDO 4 1

First FEE card 1 { 36 u char " 1

FEE-card referencing N, R, L char " 1

FEE-card entries 0 { 36 u char RDO 5 1

First FEE card 1 { 36 u char " 1

FEE-card referencing N, R, L char " 1

FEE-card entries 0 { 36 u char RDO 6 1

First FEE card 1 { 36 u char " 1

FEE-card referencing N, R, L char " 1

Unused 3 � u char 3

Sector ID 1 { 24 u char Sector 1

Total bytes per row 36

Table 2: Row description for the 864-byte, �xed-length raw sector des table. One 36-byte row

per sector, ordered by sector ID from 1{24, de�nes the interpretation of subsequent tables.

11

pad_data_in

(8-bit ADC’s)

(8-bit ADC’s)

(dead pads)raw_pad_off_in

raw_pad_off_out

raw_seq_des_in

raw_pad_nin_out

raw_pad_nin_in

pixel_data_out

09-FEB-1998

raw_sector_des

pad_data_out

pixel_data_in

raw_pad_id_in

Mapping/indexing tables
Green: Optional indexing table

Blue: Pure data

Row index or offset
Optional index offset

Red:

raw_pad_id_out (dead pads)

raw_row_idx_out

raw_row_idx_in

Row reference (other)
Black: Staf sub-directories

raw_seq_des_out

Structure for Mapped TPC Data

TPC_DATA/

Sector_N/

R.Bossingham

Figure 3: Structure for mapped TPC data. Arbitrarily chosen data tables are shown, but

the structure applies as well to calibrations. The tables are discussed in the text.

12

raw_chn_id_r6

raw_fee_idx_r6

raw_fee_idx_r1

pixel_data_r1

raw_seq_des_r1

raw_chn_nin_r1

chn_data_r6

raw_chn_id_r1

(dead chan.)raw_chn_off_r6

raw_chn_off_r1 (dead chan.)

(10-bit ADC’s)

(10-bit ADC’s)

chn_data_r1

pixel_data_r6

Blue: Pure data

Row reference (other)

Row index or offset
Optional index offset

R.Bossingham
09-FEB-1998

Optional indexing table

raw_seq_des_r6

raw_chn_nin_r6

Black: Staf sub-directories

Red: Mapping/indexing tables
Green:

raw_sector_des

*
*
*

Structure for Native TPC Data

TPC_DATA/

Sector_N/

Figure 4: Structure for native TPC data. Arbitrarily chosen data tables are shown, but the

structure applies as well to calibrations. The tables are discussed in the text.

13

Entries within Row Values Type Granularity Bytes

Index, pixel-data tables 0 { �2,018,000 u long Pad row 4

Index, raw seq des * table 0 { �2,010,000 u long " 4

Index, pad-data tables 0 { �3942 u short " 2

Pixel-table entries 0 { 46,410 u short Half pad row 1 2

Sequence table entries 0 { 46,592 u short " 2

Pixel-table entries 0 { 46,410 u short Half pad row 2 2

Sequence table entries 0 { 46,592 u short " 2

Pad table entries 1 { 91 u char Half pad row 1 1

First pad in range 1 { 91 u char " 1

Pad table entries 1 { 91 u char Half pad row 2 1

First pad in range 45 { 182 u char " 1

Pad referencing N, R, L char Pad row 1

Pad row ID 45 { 1 u char " 1

Total bytes per row 24

Table 3: Row de�nition for the raw row idx in, out tables, representing mapped data from one

pad row in a subsector. Rows are inverse ordered by pad-row ID (13{1 and 45{32). Giving the

number of table entries for the �rst and second equal halves of a pad row separately allows one to

extract, or jump into, the lower tables at half-pad-row intervals more easily. Pad ID's are numbered

from the start of the full row, as usual.

Entries within Row Values Type Granularity Bytes

Index, pixel-data tables 0 { �2,358,800 u long FEE card 4

Index, raw seq des * table 0 { �2,349,600 u long " 4

Index, channel-data tables 0 { �4607 u short " 2

Pixel table entries 0 { 16,320 u short FEE card 2

Sequence table entries 0 { 16,384 u short " 2

Channel table entries 0 { 32 u char FEE card 1

First channel 1 { 32 u char " 1

Channel referencing N, R, L char " 1

FEE card's location on sector 0 { 181 u char FEE card 1

FEE card's location on RDO 1 { 36 u char " 1

Unused u char 1

Total bytes per row 20

Table 4: Row description for the raw fee idx r1{ r6 tables, representing the native data from

one FEE card. Rows are ordered by increasing FEE card location number (1{36) on a readout

board. They resemble the raw row idx * tables.

14

Row Entry Values Type Granularity Bytes

Pad within pad row 1 { 182 u char Pad 1

Table 5: Row description of the raw pad id in, out tables for mapped data; one pad per row.

These are required if pads within a row are declared by raw row idx in to be listed explicitly.

They are e�cient for sparse data.

Row Entry Values Type Granularity Bytes

Channel within FEE 1 { 32 u char Channel 1

Table 6: Row description of the raw chn id r1{ r6 tables for native data, one channel per row.

These are required if FEE-card channels are declared to be listed explicitly in the corresponding

raw fee idx * . They are e�cient for sparse data.

If a large fraction of the pad or FEE channels have entries, it is more e�cient to note the ones

without data, than those with it. Two considerations in optimizing are:

1. Savings from e�cient random access to pad or channel data when the o�set within a table

is known, versus the cost of accessing empty entries. For mapped data, indexing is at half-

pad-row intervals|63 pads, on average. If the optional, pad-level indexing for the pixel data

is provided, a few look-ups can locate a pad and its pixel data by successive interpolation.

However, if zero-suppressed pixel data are indexed only by half pad row, all sequence lengths

preceding the requested one in the half pad row must be systematically summed, and pixel-

data access must be done sequentially.

2. Savings from not listing pad or channel ID's, versus the cost of storing empty entries. For

mapped pixel data, a pad-list entry is one byte, and zero-length sequence entries are two

bytes. If no other pad-level tables (e.g., pad-level indexing) are used, break-even occurs when

2/3's of the pads have data.

Therefore, subsectors or RDO's with at least �70{90% pad occupancy can be treated as \grey"

(i.e., having data on all pads, but not all pixels). Unless the data format is used for bulk data

storage, for which percent of overhead costs serious money, more precision is unnecessary.

Pixel Data Description

If pixel entries �ll a de�ned range, as for black data, the above tables provide all information needed

for random access to any pixel. In the simplest case|that STAR de�nes a standard time-bucket

range|all pixel data for a pad or channel can go into one row of a table that parallels other pad or

FEE-channel data. However, the time-bucket description becomes non-trivial for zero-suppressed

data, and this will be the usual case for STAR data-taking.

15

Representation of Arbitrary Time-Bucket Sequences

Time-bucket sequences on a pad can be represented by giving the number of sequences, along with

the length and �rst time bucket of each one. Support for more than 256 time buckets complicates

access and storage, since a trivial representation with octets is excluded. The scheme here (general-

ized from the SN0282 format), divides the time-bucket range into two parts, of � 256 time buckets

each; their lengths need not be equal (but probably would be). The �rst, last and \middle" time

buckets are declared in raw sector des. The following discussion refers only to pads, but applies

equally to FEE channels. These variables are used:

M : Number of sequences starting in part one of the pad's time-bucket range; 0{255.

ik : For a part-one sequence, the number of time buckets after the �rst; 0{255.

mk : For a part-one sequence, the �rst time bucket's o�set from the start of part one; 0{255.

N : Number of sequences starting in part two of the pad's time bucket range; 0{255.

jk : For a part-two sequence, the number of time buckets after the �rst; 0{255.

nk : For a part-two sequence, the �rst time bucket's o�set from the start of part two; 0{255.

M and N , the number of sequences on a pad, are stored as pad-like data in the raw pad nin *

tables described in Table . These tables are required if raw sector des declares time-bucket

sequences for a subsector to be listed explicitly. M = N = 0 is legal and used to mark pads

without pixel data. The M;N � 255 limits exclude only the extreme case of 256 consecutive,

one-bucket sequences.

Column 1 Column 2 Type Bytes

M N 2 � u char 2

Table 7: Row description for the raw pad nin in and out tables for mapped data, and the

raw chn nin r1{ r6 tables for native data Each row gives M and N for one pad or FEE channel.

M and N will vary widely, so the remainder of the sequence descriptions are given as an

ordered list in the raw seq des * tables described in Table . Each row gives the length and �rst

time bucket of one sequence. These tables are required if raw sector des declares sequences to be

listed explicitly. For zero-suppressed data, sequences are usually short and disjoint, but do not have

to be; in principle, 512 consecutive time buckets can be represented as two, 256-bucket sequences.

Redundant Indexing Tables

The pixel data are completely de�ned at this point, but random access to a pad's pixel data is

slowed by the fact that it is only indexed at half-pad-row intervals. Therefore, the format allows

redundant tables that give index o�sets (or, in principle, complete indices) at �ner granularity.

Other tables are una�ected. Two pairs of tables should be of value:

� For mapped data, the raw pad o� * tables give o�sets, at the pad level, to the sequence

and pixel indices in raw row idx *.

16

Column 1 Column 2 Type Bytes

m1 i1 2 � u char 2

m2 i2 2 � u char 2

� � � �

� � � �

� � � �

mM iM 2 � u char 2

n1 j1 2 � u char 2

n2 j2 2 � u char 2

� � � �

� � � �

� � � �

nN jN 2 � u char 2

Total bytes for pad 2 � (M +N)

Table 8: Section of a raw seq des in, out table, listing sequences on one pad; or of a

raw seq des r1{ r6 table, listing sequences on one FEE channel. Each row gives the length

(minus one) and starting position of one sequence.

� For native data, the raw chn o� * tables give o�sets, at the channel level, to the sequence

and pixel indices in raw fee idx *.

They are de�ned in Tables 9, 10 and allow random access to the pixel data for any given pad or

FEE channel. Their use is not speci�ed or implied by any other table. Still, if they exist with

non-zero row count, all random accesses to zero-suppressed pixel data would normally use them.

Column 1 Values Column 2 Values Type Gran. Bytes

Index o�set: 0 { �46,080 Index o�set: 0 { �45,090 2 � u short Pad 4

pixel data raw seq des *

Table 9: Row description for the raw pad o� in, out tables, with one row per indexed pad.

These tables are optional and redundant.

Column 1 Values Column 2 Values Type Gran. Bytes

Index o�set: 0 { �46,080 Index o�set: 0 { �45,090 2 � u short Chan. 4

pixel data raw seq des *

Table 10: Row description for the raw chn o� 1{ r6 tables, with one row per indexed channel.

These tables are optional and redundant.

The tradeo� in CPU time is between that spent creating extra tables, versus that saved during

data accesses. On average, random access must go through half of the sequence descriptions

17

between two pointers, so two random accesses to dense data cost nearly the same as calculating

index entries for all pads within this range. Half pad rows average 63 pads, so creating the extra

table is economical if more than about 2/63=3% of the pads will be randomly accessed.

Data Discussion

Pad and Channel Data

Excepting pedestals, most characteristics of the TPC electronics (gain, t0 o�set, time constant, bad

or saturated channels, FEE channel mapping onto the pad plane, etc.) can be described by one

or more values that apply to all time buckets for one pad (or FEE channel). Multiple entries in

parallel and/or multi-column tables can apply to each pad or channel.

A special type of pad/channel data is the 10-to-8-bit lookup table for the DAQ ASIC's; this

would usually be calculated from scalar information (e.g., gain), and one would neither want,

nor need, to export it. However, the capability might be necessary for debugging. Collectively,

these 1024-entry tables are quite large, but relatively squishy (a non-lossy algorithm achieving 19:1

compression was tested).

Pixel Data

Pixel-data tables, described by sequence lists, must allocate one row per time bucket in a sequence,

but their form is otherwise unconstrained. The tables are interpreted by starting from an indexed

row and calculating the total o�set to some pixel using the M , mk , N and Nk entries. This is

expensive if sequences are randomly accessed and indexed rows are widely spaced, which motivates

support for redundant tables with pad-level indexing.

The primary pixel data are ADC values or their processed derivatives, but any type, or mixture

types, supported by Staf is allowed in a row: signed or unsigned; byte, integer or oating. Row-

length and data-type ordering is constrainted somewhat by requirements on memory alignment.

Structures created by well-de�ned analysis tasks, where exibility is not an issue, might create

multi-column, mixed-type tables, but raw ADC's and other pixel data from DAQ should be placed

into one-column tables to allow selectivity in passing and retaining data.

Pedestal means, etc. calculated on the DAQ i960's will presumably be provided as integer values,

possibly scaled to give sub-integer precision. (MiniDAQ scales pedestal means, shifts, and rms's by

8 and rounds to the nearest integer, limiting truncation errors to �1=16th count.) On the other

hand, pixel data calculated o�ine may be oating point.

In MiniDAQ, raw, ten-bit ADC values are stored as u short's, and, if pedestal subtracted,

are constrained to be non-negative. This is usually desirable, but signed values, after pedestal

subtraction, would sometimes be extremely useful. Pedestal shifts are passed as short int's (signed,

of course).

TPC ADC's are 10-bit, with mean pedestals of 50{255 (typically, 200); pedestals occasionally

fall outside the allowed range due FEE defects, shorted pads, induced signals, etc. This data

18

may be suppressed or ignored, but must be handled gracefully. Without pedestal subtraction, the

maximum ADC value is determined by clock counts within the SCA digitization window: �1015

(not 1023), but not �xed precisely. If gain corrected, this limit does not apply.

MiniDAQ supports two distinct types of u char ADC values: one translates 10-bit ADC's with

a non-linear lookup table; the other constrains ADC's to � 255, and truncates them to 8 bits (for

pedestal values, intended to be � 255).

Interpreting pixel data requires additional information concerning pedestal subtraction; gain

correction; threshold and other parameters, if zero suppressed; bit patterns designating overows;

etc. The form of this information is not de�ned here. Table-naming conventions, parameter tables,

external databases or something else altogether might be used.

Readout Board Data

Tables from speci�c readout boards are more directly connected to native-format data, but might,

sometimes, be appropriately stored with mapped data structures. The format de�nition does not

require all, data tables in a sub-directory to have parallel structure. However, for sanity's sake,

the sector sub-directories should parallel one another, and their tables should refer to that sector;

other tables belong elsewhere.

The sub-directory for a sector might, for example, hold the six header tables from a sector's

six readout boards for an event. These allow certain checks; a less-than-�nal form of the header is

shown in Table 11.3 In contrast, putting 144 tables from all readout boards on the TPC into, say,

the sector 1 sub-directory would clearly violate the philosophy of the structure.

Non-local Sector Information

There is no strict requirement that tables within the sub-directory for a sector contain only infor-

mation that is local to that sector, and such a requirement is probably not practical. For example,

after global TPC tracking, track segments may connect across sector boundaries, so tracks are no

longer local to a sector. Nonetheless, if a table associating pixels with tracks were created, it should

be placed in the sector sub-directory, though the table of global tracks itself should be elsewhere.

Storage Overhead

Central Au-Au Collision Overhead (\Standard" Assumptions)

As said before, the proposed format emphasizes ease of use and access e�ciency over storage

e�ciency. However, tss simulator output might be stored in this format, and it also has implications

for computer memory requirements, so an estimate of storage overhead is appropriate. We take

assumptions from previous data-format discussions, adding others as needed. For central Au-Au

events we assume:

3Front-End Electronics to DAQ Receiver Board Fiber Optics Interface Speci�cation Version 1.0a, V. Lindenstruth

et al., and from discussions with Fred Bieser.

19

Entry Bits De�nition

0 4 trigger CMD

1 4 DAQ CMD

2 4 trigger token

3 8 trigger token LSW

4 8 bunch crossing counter

5 4 detector ID

6 8 readout unit ID

7 8 spare

8 8 spare

9 8 spare

10 8 spare

11 8 spare

12 8 tagword ($de)

13 8 tagword ($ad)

14 8 tagword ($fa)

15 8 tagword ($ce)

16 8 FEE 1 location ID (maybe)

. . .

. . .

. . .

51 8 FEE 36 location ID (maybe)

52 - detector speci�c (unde�ned)

. .

. .

. .

63 - detector speci�c (unde�ned)

Table 11: Possible event header from a readout board; de�nition not yet �nalized.

20

� Nseq = 4 sequences per pad.

� Lseq = 8 time buckets per sequence.

� No pad-level indexing tables.

� No raw pad id * tables (since data are \grey").

� Negligible Staf-level table overhead.

� 8-bit ADC data.

These assumptions are chosen mostly for consistency; others, probably more realistic, will be tried

below.) With 1080 pad rows and 136,560 pads, 8-bit TPC ADC data consumes

LseqNseqNpads = 8 � 4 � 136; 560 = 4; 369; 920 bytes ;

and the 32% storage overhead consists of:

1. The �xed-length raw sector des table: 864 bytes.

2. 24 raw row idx * table pairs: 24� (13 + 32)� 24 bytes = 25; 920 bytes.

3. 24 raw pad nin * table pairs for 5690 pads: 24� 5690� 2 bytes = 273; 120 bytes.

4. 24 raw seq des * table pairs for Nseq �Npads = 4� 5690 = 22; 760 sequences:

24� 22; 760� 2 bytes = 1; 092; 480 bytes.

Central Au-Au Collision Overhead (Venus + tss Simulation Assumptions)

Recent simulations of central Au-Au events4 using Venus and the current (early 1998) tss version

obtained a much greater hit density than assumed above:

� Nseq = 12 sequences per pad (average).

� Lseq = 10.5 pixels per sequence (average).

Retaining the other assumptions, the 8-bit ADC data now consumes

LseqNseqNpads = 10:5 � 12 � 136; 560 = 17; 206; 560 bytes ;

and the 21% storage overhead consists of:

1. The �xed-length raw sector des table: 864 bytes (always).

2. 24 raw row idx * table pairs:

24� (13 + 32)� 36 bytes = 25; 920 bytes (as before).

4Iwona Sakrejda, http://www.rhic.bnl.gov/star/starlib/doc/www/html/tpc l/tpc.html .

21

3. 24 raw pad nin * table pairs for 5690 pads:

24� 5690� 2 bytes = 273; 120 bytes (as before).

4. 24 raw seq des * table pairs for Nseq �Npads = 12� 5690 = 68; 280 sequences:

24� 68; 280� 2 bytes = 3; 277; 440 bytes.

Also, consider the cost of adding a redundant, pad-level indexing table; one four-byte row per pad

adds 24� 5690� 4 bytes = 546; 240 bytes (3.2%) of storage overhead|a total of 24%.

Two-Track Event Overhead

Now consider a sparse event: two tracks with 90 minimum-ionizing hits, perhaps from a peripheral

collision or cosmic ray. We assume:

� 45 real hits in each of two sectors.

� An additional 5% of the pads with 3-bucket noise sequences.

� Each real hit involves 3 pads (= Nwide).

� Nseq = 1 (one sequence per hit pad).

� Lseq = 5 (�ve pixels per sequence for real hits).

� No pad-level indexing tables.

� raw pad id * tables are used.

� Negligible Staf-level table overhead.

� 8-bit ADC data.

The 8-bit ADC data consumes

X

i

Lseq
i
Npads

i
= 5 � (2 � 45 � 3) + 3 � (0:05 � 136; 560) = 21; 834 bytes ;

and the 61-KB storage overhead consists of:

1. The �xed-length raw sector des table: 864 bytes (always).

2. 24 raw row idx * table pairs:

24� (13 + 32)� 36 bytes = 25; 920 bytes (as for Au-Au).

3. 7098 pad ID's in the raw pad id * tables:

7098� 1 bytes = 7098 bytes.

4. 24 raw pad nin * table pairs for a total of 7098 pads:

7098� 2 bytes = 14; 196 bytes.

22

5. 24 raw seq des * table pairs, representing a total of 7098 sequences:

7098� 2 bytes = 14; 196 bytes.

Hierarchical structures are intrinsically ine�cient for sparse events, and the situation is worse

here because the granularity and pointer lengths were chosen to support dense data; a simple list

describing all sequences in the TPC would have less overhead. The exact numbers are sensitive

to threshold settings and other assumptions, but 61 KB (�285%) is a plausible guestimate for

overhead.

Black Event Overhead

The overhead for black (e.g., pedestal) data is negligible (< 0:1%), given the enormous data volume

and its consistent structure. Any \reasonable" data format will do, and, in any case, relatively little

non-zero-suppressed data should be stored in the future. So, while the proposed format has low

overhead for black events, this is only a minor consideration.

How Squishy is the Proposed Format?

Overhead for central Au-Au events is of the most concern; the raw seq des * tables completely

dominate this. Several design choices allocate more bits to it than really necessary. If one re-

stricts the format to 64, 16-bucket sequences per pad, and ignores word and byte boundaries, the

raw seq des * overhead shrinks from 21% to 16% (Venus+tss assumptions). Such savings are

too small to justify the CPU cost and coding complications for an analysis format.

However, more general encoding/decoding schemes (e.g., Lempel-Ziv, Hu�man, adaptive Hu�-

man) can hide the complications and are sometimes implemented in hardware, as for tape- or

disk-drive compression. Such schemes might be applied to analysis-format data for storage of

simulations data, but estimates of savings are not available.

Some minor aspects of the proposed format were chosen to minimize the variety of bit patterns

within a given table|improving their potential compressibility. However, no tests have been carried

out.

Overhead in STAR tppad/tppixel Format

The tppad/tppixel format now used for TPC Slow Simulator (tss) output and TPC CLuster �nder

(tcl) input is both storage- and CPU-ine�cient: redundant information and empty space are

considerable, and bit-level decoding is required. An estimate from SN0282 of its storage overhead

is reproduced here.

23

Each pad is indexed with four long int's, and each pixel takes an additional long int:

struct tss_tppad{

long jpix; /* offset into the tppixel table */

long nseq; /* number of sequences for this pad */

long secpad; /* unique pad id within a sector */

long tpc_row; /* encoded sector-row = 100*sector + row */

};

struct tss_tppixel{

long datum; /* encoded tzero, nbins, adc values */

};

Total storage for a central Au-Au event (\standard" assumptions) is

(4 � 4 + 4NseqLseq)Npads = (16 + 4 � 4 � 8) � 136; 560 = 19; 664; 640 bytes :

Since the ADC is allocated 10 bits in this format, the ADC data occupies 5,462,400 bytes, leaving

14,202,240 bytes of overhead|10:2� as much as the proposed format.

Application Considerations

Despite the preceding discussions, the most important questions about the TPC data structures

do not concern CPU and storage overhead, but, rather, are they easily used for real applications?

How do they a�ect the design of those applications? To answer this adequately requires actual

coding and testing, but a few, simple gedanken experiments can be done here.

Event Server Considerations

It is foreseen that an event server will provide data consumers with TPC data subsets, so the

designs of the event server and TPC data structures are inter-related, involving several issues:

1. Granularity supported by the event server. This is undecided, but should not be below the

pad, or above the sector, level. At the pad level, a transaction would be dominated by the

cost of extraction; at the sector level, there would usually be a signi�cant I/O cost, as well.

Information on a single pad is of limited value, but one can easily imagine wanting data below

the sector level|a single readout board or FEE card, for example.

Suggestion: Support data requests at the granularity of a FEE card or half pad row.

2. Form of events stored in the server. If events are stored in DAQ's format and translated

separately for each data request, it is always cheaper to translate and send a smaller data

unit. This scheme would be justi�ed only if most requests are for small subsets of an event.

24

On the other hand, if DAQ data are translated and stored in the analysis format, the cost of

extracting data must be balanced against the cost of transmitting unneeded data.

Suggestion: Store translated events to reduce latency, and de�ne the event format to mini-

mize the cost of extracting data at the supported granularity.

3. Event re-access through the event server. Events could be cached on the event server, allowing

a user to access additional data subsets as needed, until s/he requests another event. This

is practical if, and (probably) only if, the number of clients for data is less that the number

of events that can be simultaneously stored on the server. The system would allow a user to

be conservative about the volume of data requested interactively: less I/O, at the expense of

more event storage.

Suggestion: Desireable, if practical...

4. Simultaneous support for mapped and native data. DAQ probably does not usually transmit

data from blind FEE channels, and would have to be told explicitly to do so, but this would be

helpful for diagnosing and studying the electronics. If DAQ does transmit this information, it

can be provided only in the native format to a consumer. This raises the question of whether

the event server should simultaneously support native and mapped events or, alternatively,

who translates into the mapped format?

Suggestion: When producing native-format data, simultaneously produce and store the

mapped-format data.

5. Level of request complexity supported by the event server. Supporting data granularity below

the full TPC raises a question: what data combinations may be requested? If granularity is

at the level of a half pad row, can one request all data from sectors 13{24, rows 44 and 45,

for example?

Suggestion: Support all possible combinations of legal subsets.

6. Form of data requests to the event server. The appropriate choice depends upon other design

choices|supported granularity, complexity of requests, etc. To be clear: requests for data

only at the sector level can be supported trivially, but describing an arbitrary data subset

requires a complexity approaching that of a data format.

Suggestion: An interesting idea would be to make the request in the form of the TPC

data structure to be �lled.

7. Redundant indexing tables. The raw pad o� * or raw chn o� * tables are easy to calcu-

late as data are formatted and add only 0.52MB (3%)more storage overhead to Au-Au events.

25

Suggestion: Always provide them.

On-line Extraction of Data Subsets

For the sake of discussion, assume that the on-line event server incorporates the above suggestions.

Also assume that, at some given time, DAQ is providing mapped, zero-suppressed data from all

sectors; the event server is producing mapped \grey" data (data on all pads), along with the

optional raw pad o� * tables; and that an appropriate Staf directory structure exists (maybe

passed to the server as the data request). Consider the process of extracting some data subsets:

Sector N, outer subsector: This is easy; most tables correspond to exactly one subsector. Copy

all TPC DATA/Sector N/* out tables, as well as any tables for RDO's 3{6; update all

entries in raw sector des.

Sector N, pad rows 44, 45: This is worse. We copy the rows from raw row idx out for pad

rows 44 and 45, updating the indices in them. Next, from the original table, we take the

starting indices and the number of rows corresponding to the two half pad rows for each of

the other tables, and copy the appropriate parts of them. We probably still copy any tables

for RDO's 3{6. Finally, update all entries in raw sector des, Row N that pertain to the

sector, outer subsector, or RDO's 3{6. (The raw pad o� out table contains relative o�sets,

not absolute row numbers, so no update is needed there.)

Sector N, pad row 44, pads 70, 71, 72: This is bad, but tractable, if the raw pad o� out ta-

ble exists. We jump to the relevant data, and can use raw row idx out and raw pad o� out

to �gure out the row ranges in the sequence and pixel tables, if we're careful; then, copy

them. We have to update many of the entries in raw sector des, raw row idx out and

raw pad o� out, then create and �ll raw pad id out.

This probably is possible, but more microscopic than should be expected from an event server,

philosophically; the suggestion for half-pad-row granularity stands.

Sector N, RDO 6: This request would probably return an error code to the user, since we as-

sumed that the event server is producing mapped data, so that data from blind channels

would be unavailable.

Data Pre-processing Considerations

In general, before cluster and hit �nding, the data must be pre-processed: 8-to-10-bit uncom-

pression; pedestal subtraction; gain correction; threshold application; zero suppression; zero re-

suppression after applying a threshold; and/or embedding Monte Carlo tracks into real data. We

examine these problems briey to determine whether or not our structures are compatible with

practical solutions.

26

One-to-One Table Mapping Problems

In the simplest case, each entry in a table is mapped into entries in a parallel table by a de�ned

function; an obvious example is 8-to-10-bit uncompression. Since Staf doesn't support 10-bit inte-

gers, the translation would be from u char's to u short's. One would get the row count for the 8-bit

table from Staf and allocate a table for the u short's, then loop over the rows, translating into the

new table. At the end, the old, 8-bit table could be deleted. No operations on higher level tables

are needed.

Data Remapping within a Table

Entries within a table may have to be assigned new values. In the simplest case, a �xed function

is applied to a table, without forcing any reformatting of its contents. An example would be the

application of a �xed threshold to \black" data. One gets the table's row count from Staf, then

loops over the rows, setting sub-threshold values to zero. No higher level tables have to be accessed.

More work is required if the mapping function has dependencies, as would a gain correction

or pedestal subtraction. Then, one must work through the table using the higher level structures

to associate the table entry to a particular pad or pixel. Simultaneously, one must work through

another table structure to get the applicable gain or pedestal. In principle, dependent information

could be put into tables parallel to the ones being modi�ed, but this would usually just shift the

same work to a di�erent place.)

Even more work is required when the mapping function obsoletes the structure; for example,

applying a threshold usually results in time-bucket sequences containing zeroes. For a cluster

�nder like tcl, this is not a problem, since sequences are copied into a at space before operations.

However, a more e�cient cluster �nder would operate directly on the found sequences without

examining contents. Then, sequences would have to be shortened or split before cluster �nding,

forcing signi�cant shu�ing of the data. If one is, in e�ect, zero-suppressing \black" data, even

raw sector des might have to be edited.

Cluster-�nding Considerations

Currently, the tcl cluster �nder uses the tppad/tppixel structures only for storage; data are copied

to working arrays before any operations. Almost any format can replace tppad/tppixel for this.

However, to make tcl e�cient, it should not move data unnecessarily, or ignore existing information.

Zero-suppressed sequences should be identi�ed and stored in the mapped data format, and this

will be the usual form of data from the on- or o�-line event server, after translation. One would

also create the raw pad o� * table of pad-level index o�sets, if it didn't already exist, to allow

easy, pad-level access to the data. One would also create a table, parallel to raw seq des *, in

which to store cluster ID's assigned to the sequences. The actual cluster �nding would be done

with something like the \peep-hole cluster �nder.5"

5Dirk Schmischke, Documentation for the new peep-hole cluster �nder,

27

The pattern-recognition problem is solved at this point, but the clusters are not easily accessible

as such. They could be stored in arrays, as tcl does, but a framework analogous to the data-

distribution structures proposed in this note would be more e�cient. This requires a new tree

in Sector N/, but this could point back to the original tree at the sequence level, as in Fig. 5,

avoiding data copying. Alternatively, if heavy cluster processing is expected, the sequences could

be sorted into the cluster tree, as in Fig. 6, optionally deleting the original raw data tree.

Structure for TPC Clusters - Raw Data

Sector_N/

cls_pad_nin_*

cls_row_idx_*

cls_cls_idx_*

R.Bossingham
13-FEB-1998

raw_pixel_data_*
(10-bit ADC’s)

TPC_DATA/

cls_sector_des

raw_row_idx_*

raw_sector_des

raw_seq_des_*

Mapping/indexing tables

Row index or offset

Blue: Pure data

Red:

Row reference (other)
Black: Staf sub-directories

rcl_seq_off_*

Figure 5: Schematic TPC cluster represention pointing to \raw" time-bucket sequences.

The cluster tables will be explicitly de�ned in a separate note.

http://www.rhic.bnl.gov/star/starlib/doc/www/html/daq l/public/software/cluster.html .

28

Sector_N/

cls_pad_nin_*

cls_seq_des_*

cls_pixel_data_*
(10-bit ADC’s)

Structure for TPC Clusters - Cluster-based Data

cls_seq_off_*

TPC_DATA/

cls_sector_des

cls_row_idx_*

cls_cls_idx_*

Red: Mapping/indexing tables

Row index or offset

Blue:

Staf sub-directories
Row reference (other)

Black:

Pure data
R.Bossingham
13-FEB-1998

Figure 6: Schematic TPC cluster represention pointing to time-bucket sequences sorted by

cluster. The cluster tables will be explicitly de�ned in a separate note.

29

Hit-�nding Considerations

In general, there is not a 1:1 correspondence between clusters and hits; some clusters contain

multiple hits, some contain none. Also, conventional (\follow-your-nose") track �nding in an envi-

ronment of dense hits requires some arti�cial structuring so that each search for a hit need not go

through the entire hit list for a pad row. This complicates the structure and motivates a separate

data tree.

The cluster and hit data structures should also allow a second pass (not yet implemented)

in which global information from tracking iteratively improves hit �nding. If tracks are directly

associated only with hits, this implies the need for pointers from hits to clusters, and from clusters

to hits.

The obvious structure for hits within a pad row is a cartesian grid (pad row vs. drift direction),

grouping the hits within each grid element. This is the scheme assumed in Fig. 7. Ideally, the grid

elements would be square, minimizing the perimeter-to-area ratio, as well as large, compared to

the maximum distance at which a hit could be assigned to a track, and compared to the typical

separation between hits in a Au-Au event to reduce overhead. On the other hand, a grid element

should be small enough that it holds only a small fraction of the hits on the pad row, so that the

gained e�ciency justi�es the complications.

The main complication occurs near the perimeter of a grid element, where hits in multiple grid

elements can lay within the search radius around a track. A straight-forward approach would verify

that the grid was large compared to the search radius, and then search the multiple (up to four)

groups of hits.

A more elaborate scheme, due to Iwona Sakrejda, uses overlapping elements, with the overlap

de�ned by the maximum search radius, allowing hits to be assigned to multiple groups. This

approach is simpler, provided that one groups, not hits, but pointers to the hits, so that there is

only a single copy of the hit table and track assignments.

Conclusions

The table structures proposed in this note are compatible with STAR's needs for event serving, clus-

ter/hit �nding, and two-pass tracking, and should facilitate their implementation or improvement.

However, to be e�cient, the software must exploit the structures|data structures are meaningless

in a vacuum. Software requirements and design could easily be set so as to force modi�cation of

the structures, or even to preclude their e�ective use.

Before �nal adoption of any structures, it strongly recommended that the event server be spec-

i�ed, and that the plan for reconstruction software be reviewed. In addition, some representative,

preliminary code using the structures should be written and benchmarked to verify usability and

e�ciency, as well as to check for holes in the de�nition (some implementation details have clearly

not been de�ned).

30

Row index or offset

Blue: Pure data

TPC_DATA/

Sector_N/

hit_sector_des

hit_row_idx_*

Mapping/indexing tables

Row reference (other)
Black: Staf sub-directories

Red:

hit_grd_off_*

cls_seq_des_*

cls_sector_des

cls_hit_off_*

hit_hit_des_*

Blue: Derived data

Structure for TPC Hits

cls_cls_idx_*

hit_hit_off_*

hit_cls_off_* cls_seq_off_*

cls_pixel_data_*
(10-bit ADC’s)

cls_pad_nin_*

cls_row_idx_*

R.Bossingham
13-FEB-1998

Figure 7: Schematic TPC hit represention, with tables relating hits to clusters, and vice

versa. The hit and cluster tables will be de�ned explicitly in a separate note.

31

